О ПОЛНОТЕ НЕКОТОРОЙ ЧАСТИ СОБСТВЕННЫХ И ПРИСОЕДИНЕННЫХ ВЕКТОРОВ ПОЛИНОМИАЛЬНЫХ ОПЕРАТОРНЫХ ПУЧКОВ

Г. А. Исаев

1. Рассмотрим в гильбертовом пространстве \mathcal{H} полиномиальный операторный пучок $L(\lambda) = \lambda^n A_n + \lambda^{n-1} A_{n-1} + \ldots + \lambda A_1 + A_0.$

Пусть $[\mathcal{H} \to \mathcal{H}]$ — алгебра линейных ограниченных операторов, действующих в \mathcal{H} , C_p — идеал этой алгебры, состоящий из всех линейных операторов T таких, что $\mathrm{Sp}(T^*T)^{p/2} < \infty$, p > 0. Максимальный идеал этой алгебры, состоящий из всех вполне непрерывных операторов, обозначим через C_∞ (см. [1]).

Целью настоящей работы является нахождение достаточных условий для полноты некоторой части и суммируемости рядов Фурье по той же части собственных и присоединенных векторов (сокращенно с. п. в.) пучка $L(\lambda)$ в гильбертовом пространстве \mathcal{H}_{\bullet} Общей основой работы является факторизация пучка $L(\lambda)$ на два множителя, а последняя в свою очередь связана сама по себе интересной задачей о разрешимости соответствующего операторного уравнения

(1)
$$A_n Z^n + A_{n-1} Z^{n-1} + \ldots + A_1 Z + A_0 = 0$$

в пространстве $[\mathcal{H} \to \mathcal{H}]$.

Указанным вопросам посвящены многочисленные работы различных авторов [1] — [6].

2. Сформулируем основную теорему о полноте.

Теорема 1. Пусть существует целое положительное число т $(2 \leqslant m \leqslant n)$ такое, что операторы $T_j \equiv A_1^{-1}A_j$ $(j=0,2,3,\ldots,n)$ удовлетворяют соотношениям

a)
$$||T_j|| \cdot ||T_0||^{j-1} \le ||T_m|| \cdot ||T_0||^{m-1} < \delta$$
,

 $z\partial e \ \delta > 0$ — наперед заданное число (зависящее от порядка пучка),

$$T_0 \in C_p, p > 0,$$

$$\operatorname{Ker} A_0^* = \{0\},$$

r)
$$|\arg (T_0 \varphi, \varphi)| \leqslant \frac{\pi}{\alpha}, \quad \alpha \geqslant 2 \quad u \quad \alpha > 2p.$$

Тогда существует число r>0 такое, что часть с. п. в., соответствующая собственным числам пучка $L(\lambda)$, по модулю не превосходящих числа $r\mid\mid T_0\mid\mid$, образует полную систему в пространстве $\mathcal H$.

Поясним роль условий а) — г).

Неравенство а) обеспечивает существование корня Z операторного уравнения (1). Из условия б) вытекает принадлежность оператора Z классу C_p , а условие в) означает, что $\ker Z^* = \{0\}$. Наконец, неравенство г) обеспечивает существование некоторого угла, внутри которого для достаточно больших по модулю λ резольвента $(E-\lambda Z)^{-1}$ ограничена. Оказывается возможным применять теорему Фрагмена — Линделёфа для внешности указанного угла. Известные рассуждения М. В. Келдыша (см. [1], [7]) завершают доказательство теоремы.

Замечание 1. Для квадратичных пучков $\delta=1/4$. Можно вычислить δ и для пучков третьего порядка. Для квадратичных пучков этот результат был установлен в работе И. В. Горюка [4].

Замечание 2. Если $A_1 = E$, где E — единичный оператор, то такие пучки совпадают с пучками, изученными в работах [2], [3] и [5]. Но в этих работах изучаются в основном операторные пучки с самосопряженными коэффициентами. Близкие к нашим результаты установлены A. C. Маркусом в работе [5].

Теорема 2. Пусть имеют место условия a) — r) теоремы 1. Тогда система c. n. s. nучка $L(\lambda)$, соответствующая собственным числам из круга $|\lambda| < \varepsilon$, ε 0 ε 0 — произвольное положительное число, полна ε 0, может быть, ε 2 конечным дефектом.

 $^{^{1}/}_{4}$ 16 Успехи матем. наун, т. XXVIII, вып. 1

3. Пусть выполняются условия a), б) и г) теоремы 1. Тогда система спв пучка $L(\lambda)$, соответствующая собственным числам из круга $|\lambda| \leqslant r \mid \mid T_0 \mid \mid$, образует полную систему в замыкании области значений оператора $Z \in {\it C}_{\it p}$. Составим формальный ряд Фурье по элементам этой системы для $f \in \operatorname{Im} Z$

$$f \sim \sum_{k=1}^{\infty} c_k \varphi_k.$$

Определение. Будем говорить, что ряд (2) суммируем к вектору f по методу Абеля порядка в (в смысле Лидского [8]), если существует последовательность натурального ряда $\{n_k\}_1^{\infty}$ такая, что для любого t>0 сходится ряд

3)
$$u(t) = \sum_{k=1}^{\infty} \left(\sum_{s=n_k+1}^{n_{k+1}} c_s(t) \varphi_s \right),$$

причем $\lim_{t\to+0} u(t) = f$.

Следующая теорема обеспечивает суммируемость ряда (2) по методу Абеля с указанием порядка и коэффициентов $c_s(t)$ ряда (3).

Теорема 3. Пусть имеют место условия а), б) теоремы 1, кроме того,

(2')
$$|\arg(T_0\varphi, \varphi)| \leqslant \frac{\pi}{\alpha}, \quad \alpha > \max\{2, 2p\}.$$

д) Характеристические числа оператора Z из круга $|\lambda| \leqslant q$ находятся вне угла $|rg \zeta| \leqslant \pi - rac{\pi}{lpha} - \epsilon$. (Их конечное число.) Здесь q — некоторое достаточно большое

Tогда для каждого вектора $f\in {
m Im}\; Z$ ряд Фурье (2) суммируем к f методом Абеля порядка eta_1 , где $p \leqslant eta_1 < rac{lpha}{2}$, $2n < eta_1 \leqslant 2n + 1 (n=0,1,2,\ldots)$ с коэффициентами

$$c_{kj}(t) = e^{\lambda_0^{\beta_1} t} (f, Z^* \psi_{m_j-k-1}),$$

и порядна β_2 , где $p \leqslant \beta_2 < \frac{\alpha}{2}$, $2n-1 < \beta \leqslant 2n \ (n=1,\ 2,\ 3,\ \ldots)$ с поэффициентами

$$c_{kj}(t) = e^{-\lambda_0^{\beta_2}t} (f, Z*\psi_{m,i-k-1}).$$

 $c_{kj}\left(t\right)=e^{-\lambda_{0}^{\beta_{2}t}}\left(f,\;Z^{*}\psi_{m_{j-k-1}}\right).$ 3 decs $\psi_{0}^{(j)},\;\psi_{1}^{(j)},\;\ldots,\;\psi_{m_{j}-1}^{(j)}-c.\;n.\;s.$ one pamopa $Z^{*},\;$ ombe various equations $\lambda=\overline{\lambda}_{0},\;$ ede $\lambda_{0}-xapa$ kmeристическое число оператора Z.

Автор благодарен А. Г. Костюченко за внимание к работе.

ЛИТЕРАТУРА

- [1] И. Ц. Гохберг, М. Г. Крейн, Введение в теорию линейных несамосопряженных операторов, М., «Наука», 1965.
- [2] A. Friedman, M. Shinbrot, Nonlinear eigenvalue problems, Acta Math. **121**:1—2 (1968), 77—125.
- [3] R. E. L. Turner, A class of nonlinear eigenvalue problems, J. of Funct. Analysis 7, 2:3 (1968), 297—322.
- [4] И. В. Горюк, Одна теорема о полноте системы собственных и присоединенных векторов операторного пучка, Вестник МГУ, матем., № 1 (1970), 55--60.
- [5] А. С. Маркус, О полноте части собственных и присоединенных векторов для некоторых нединейных спектральных задач, Функц. анализ 5:4 (1971), 78—79.
- [6] М. Г. Гасымов, К теории полиномиальных операторных пучков, ДАН 119:4 (1971), 747-750.
- [7] М. В. Келдыш, О собственных значениях и собственных функциях некоторых классов несамосопряженных уравнений, ДАН 77:1 (1951), 11-14.
- [8] В. Б. Лидский, О суммируемости рядов по главным векторам несамосопряженных операторов, Труды ММО 11 (1962), 3-35.

Поступило в Правление общества 1 июня 1972 г.